Fisheries Research and Monitoring Activities of the Lake Erie Biological Station, 2018 ${ }^{1}$

Prepared by (in alphabetical order) Kevin R. Keretz, Patrick M. Kočovský, Richard T. Kraus, Joseph D. Schmitt, and Christopher S. Vandergoot.

Department of the Interior, U.S. Geological Survey
Great Lakes Science Center, Lake Erie Biological Station
6100 Columbus Avenue, Sandusky, Ohio 44870

[^0]
Scientific Names

The following scientific names correspond to the common names of fishes captured during surveys described in this report:

Scientific name	Common name	Scientific name	Common name
Acipenser fulvescens	Lake Sturgeon	Micropterus dolomieu	Smallmouth Bass
Alosa pseudoharengus	Alewife	Micropterus salmoides	Largemouth Bass
Ambloplites rupestris	Rock Bass	Morone americana	White Perch
Ameiurus nebulosus	Brown Bullhead	Morone chrysops	White Bass
Aplodinotus grunniens	Freshwater Drum	Moxostoma erythrurum	Golden Redhorse
Carassius auratus	Goldfish	Moxostoma macrolepidotum	Shorthead Redhorse
Carpiodes cyprinus	Quillback	Neogobius melanostomus	Round Goby
Catostomus commersonii	White Sucker	Notropis atherinoides	Emerald Shiner
Coregonus clupeaformis	Lake Whitefish	Notropis hudsonius	Spottail Shiner
Cyprinus carpio	Common Carp	Notropis volucellus	Mimic Shiner
Dorosoma cepedianum	Gizzard Shad	Osmerus mordax	Rainbow Smelt
Esox masquinongy	Muskellunge	Perca flavescens	Yellow Perch
Ichthyomyzon unicuspis	Silver Lamprey	Percina caprodes	Logperch
Ictalurus punctatus	Channel Catfish	Percopsis omiscomaycus	Trout-perch
Labidesthes sicculus	Brook Silverside	Salvelinus namaycush	Lake Trout
Lota lota	Burbot	Sander vitreus	Walleye
Macrhybopsis storeriana	Silver Chub		
Petromyzon marinus	Sea Lamprey		

Executive Summary

A comprehensive understanding of fish populations and their interactions is the cornerstone of modern fishery management and the basis for Fish Community Goals and Objectives for Lake Erie. This report is responsive to U.S. Geological Survey (USGS) obligations via Memorandum of Understanding (MOU) with the Great Lakes Council of Lake Committees (CLC) to provide scientific information in support of fishery management. Goals for the USGS Great Lakes Deepwater Fish Assessment and Ecological Studies in 2018 were to monitor long-term changes in the fish community and population dynamics of key fishes of interest to management agencies. Specific to Lake Erie, expectations of this agreement were sustained investigations of native percids, forage (prey) fish populations, and Lake Trout.

Our 2018 deepwater program operations began in April and concluded in December, and utilized trawl, gillnet, hydroacoustic, lower trophic sampling, and telemetry methods. This work resulted in 51 bottom trawls covering 40 ha of lake-bottom and catching 33,156 fish totaling $1,682 \mathrm{~kg}$ during 3 separate trawl surveys in the western and central basins of Lake Erie. Gillnet assessments for cold water species in the western and eastern basins of Lake Erie consisted of 7.2 km of gill nets, which caught an additional 213 fish, 105 of which were native coldwater species: Lake Trout, Burbot, and Lake Whitefish. USGS hydroacoustic surveys produced 179 km of transects, and lower trophic sampling provided data from zooplankton samples ($\mathrm{n}=27$), benthic grabs ($\mathrm{n}=18$), and water quality profiles ($\mathrm{n}=27$) to populate a database maintained by the Ontario Ministry of Natural Resources and Forestry (OMNRF), Ohio Division of Natural Resources (ODNR), Michigan Division of Natural Resources (MIDNR), Pennsylvania Fish and Boat Commission (PFBC), and New York State Department of Environmental Conservation (NYSDEC). USGS also assisted CLC member agencies with deployment and maintenance of the Great Lakes Acoustic Telemetry Observation System (GLATOS) throughout all three Lake Erie sub-basins, supporting multiple coordinated telemetry investigations.

Lake Trout investigations included annual gill net surveys and more recent acoustic telemetry of spawning migration and habitat use in coordination with OMNRF, NYSDEC, and PFBC. Results from Lake Trout investigations were reported in the Coldwater Task Group annual report to the Great Lakes Fishery Commission (GLFC) and the CLC (http://www.glfc.org/lake-erie-committee.php). Likewise, interagency forage fish assessments conducted with hydroacoustics were summarized and reported in the Forage Task Group annual report (http://www.glfc.org/lake-erie-committee.php). Additionally, at the request of the Lake Erie Committee (LEC) in 2016, we worked with ODNR and OMNRF to develop a bottom trawl survey in the central basin that addressed current uncertainties in the Yellow Perch stock assessment. The USGS contribution to this effort has been incorporated in the OMNRF database, which included exploratory bottom trawls and acoustic habitat mapping in 2018, summarized in the Yellow Perch Task Group annual report (http://www.glfc.org/lake-erie-committee.php).

This report presents biomass-based summaries of fish communities in western Lake Erie derived from USGS bottom trawl surveys conducted from 2013 to 2018 during June and September. The survey design provided temporal and spatial coverage that did not exist in
the interagency trawl database, and thus complemented the August ODNR-OMNRF effort to reinforce stock assessments with more robust data. Analyses herein evaluated trends in: total biomass, abundance of dominant predator and forage species, non-native species composition, biodiversity and community structure. Data from this effort can be explored interactively online (https://lebs.shinyapps.io/western-basin/), and are accessible for download (https://doi.org/10.5066/P9Z0SBKZ, Keretz 2019). Annual survey data are added to these sources as the data become available.

Introduction

Lake Erie is the most populated of the Great Lakes basins, and as such has undergone dramatic anthropogenic changes. Since the 1800s, stressors such as overexploitation, habitat destruction, exotic species introduction, industrial contamination, and changes in nutrient loading have resulted in substantial changes affecting the fish community. The most notable changes have been declines in or extirpation of many native species (Hartman 1973; Leach \& Nepszy 1976; Ludsin et al. 2001). Since the implementation of the Clean Water Act and Great Lakes Water Quality Agreement in the 1970s, habitat conditions for fish have improved, which in part has resulted in several strong percid year-classes. These strong year-classes benefited from more restrictive management that ultimately rehabilitated Lake Erie percid stocks.

Today, the primary goal of fishery resource managers in Lake Erie is "To secure a balanced, predominantly cool-water fish community characterized by self-sustaining indigenous and naturalized species that occupy diverse habitats, provide valuable fisheries, and reflect a healthy ecosystem (Ryan et al. 2003)," yet there is little guidance on what fish community characteristics indicate a balanced and healthy Lake Erie ecosystem. Historically, Lake Erie's mesotrophic cool water habitats supported harmonic percid and salmonid fish communities, and it is the aim of management to re-establish these communities.

Although Lake Erie management agencies have traditionally focused on numerical indices of a few economically important species (primarily Walleye, Yellow Perch, Lake Trout, and Smallmouth Bass), aquatic ecosystem models are typically evaluated in terms of biomass. Most time series of fish community data from Lake Erie do not contain measurements of biomass. Therefore, our understanding of fish community structure and ecosystem dynamics from mass-balance models has been limited to short-term investigations and proxy measurements (e.g., length-weight conversion).

In response to this need, USGS revised the Lake Erie trawl program to provide biomassbased measurements of fish population dynamics and ecosystem condition for Lake Erie. This change occurred in 2012, coincident with the switch to a new research vessel. Because the previously used trawl gear would not fish properly from the new vessel, we changed to a different bottom trawl. As this situation marked the beginning of a new time series of data, the sampling design was expanded to include for greater spatial coverage and increased sample size. Note that traditional numerically-based catch data (e.g., number per hectare) for individual species can be explored and downloaded online (from 2013 to present - https://lebs.shinyapps.io/western-basin/, https://doi.org/10.5066/F7KK9B1R) or obtained for earlier years (https://doi.org/10.5066/F75M63X0). The purpose of this
report was to develop a comprehensive understanding of the long-term changes and population dynamics of key fishes of interest to management agencies, including native percids and their forage. Here, we summarized survey results for the most recent series of western basin trawl data from 2013 through 2018.

Methods

Survey Area and Sampling Design

During 2013-2018, we conducted a grid-based sampling design in both June and September, referred to here as spring and autumn, respectively (Figure 1). This sampling design complemented the time series of combined trawling efforts between ODNR and OMNRF in August, and together these surveys provide a foundation for addressing ongoing and emerging issues defined by Lake Erie task groups. The sampling domain was based upon the height of the net when fishing (ca. 3 m), the Lorain ridge to the east, and the mouths of major rivers. The spacing of the grid was six minutes of longitude (E-W) and latitude ($\mathrm{N}-\mathrm{S}$), and the origin of the six-minute intersections of latitude and longitude was chosen to provide the maximum number of locations that could be sampled within a week ($\mathrm{n}=41$). Due to navigation concerns, the entire grid was shifted south by 1.85 km after the spring sampling trip in 2013 to avoid conflict with large boats using the shipping lanes. In spring of 2017, only 36 sites were sampled due to a structural failure of the trawl gallows when the net became snagged on the lake bottom. In spring of 2018, no trawling was conducted due to maintenance and repair of the research vessel while in dry-dock.

Figure 1. Target bottom trawl locations sampled by U.S. Geological Survey Lake Erie Biological Station.

Results and Discussion

The 2018 autumn survey took place during the week of September 17. We trawled a total area of 32 hectares, and caught a total fish biomass of 1,415 kg (30,972 fish from 21 species).

Trends in Biomass and Community Composition

Total biomass in trawl catches declined by approximately 85 percent from $310 \mathrm{~kg} / \mathrm{ha}$ in 2013 to $46 \mathrm{~kg} / \mathrm{ha}$ in 2018 (Table 1). This decline was not attributed to any single taxon, but was observed across the assemblage and functional groups, including predators (percids and moronids), forage fishes (Emerald Shiners, Gizzard Shad, and Rainbow Smelt), and large benthic species (Freshwater Drum, Quillback, Common Carp, and Channel Catfish).

Table 1: Survey summaries of catch ($\mathrm{kg} / \mathrm{ha}$) for total and forage species (\pm s.d.), biomass proportion of non-native species, and Shannon Diversity index (Morris et al. 2014) values.

Year	Season	n	Total	Forage	Non-Native Proportion	Shannon Diversity
2013	Spring	41	310 ± 249	52.2 ± 111.4	0.12	0.35
2013	Autumn	41	235 ± 154	4.9 ± 8.98	0.24	1.63
2014	Spring	41	194 ± 173	11.8 ± 25.75	0.13	1.08
2014	Autumn	41	178 ± 113	12.2 ± 21.04	0.25	1.63
2015	Spring	41	122 ± 100	5.4 ± 19.22	0.10	1.39
2015	Autumn	41	86 ± 66	4.9 ± 5.79	0.15	1.89
2016	Spring	41	101 ± 75	0.1 ± 0.12	0.09	1.63
2016	Autumn	41	74 ± 57	3.5 ± 6.35	0.22	2.02
2017	Spring	36	49 ± 36	0.2 ± 0.63	0.17	1.98
2017	Autumn	41	27 ± 29	1.3 ± 2.36	0.16	1.24
2018	Spring	0	-	-	-	-
2018	Autumn	41	46 ± 27	2.4 ± 4.71	0.10	1.42

Forage biomass averaged $2.4 \mathrm{~kg} / \mathrm{ha}$ in 2018 during autumn sampling (Table 1). Catches of Emerald Shiner peaked at $51.5 \mathrm{~kg} / \mathrm{ha}$ in spring 2013 and were $<0.1 \mathrm{~kg} / \mathrm{ha}$ in autumn 2018 (Figure 2). During 2013-2018, Rainbow Smelt catches were low and varied from $<0.01 \mathrm{~kg} / \mathrm{ha}$ to $5 \mathrm{~kg} /$ ha (Figure 2). Similarly, Gizzard Shad were also low and variable, but typically higher in autumn than spring historically, reflecting the occurrence of young-ofyear fish (Figure 2).

 Despite the decrease in total biomass, biodiversity of trawl catches was variable and
(Figure 2). Other non-native species (Round Goby, Goldfish, Sea Lamprey) were captured in
low abundances ($<0.1 \mathrm{~kg} / \mathrm{ha}$) during annual surveys.

 Common Carp represented the second most abundant non-native species by biomass, and
varied from 0.2 to $17 \mathrm{~kg} /$ ha (mean $=5.1 \mathrm{~kg} / \mathrm{ha}$, s.d. = 5.6; Figure 2) during 2013-2018. After $=30.01$) across the series, with catch rates of $3.61 \mathrm{~kg} / \mathrm{ha}$ in autumn of 2018 (Figure 2).

[^1]

Figure 3. Biomass proportion of fish in bottom trawls in western Lake Erie.

Similar to the numerically-based Shannon Diversity estimates of fish community structure, species biomass composition varied little across the series. While large benthic species (Freshwater Drum, Common Carp, Quillback, and Channel Catfish) were not numerically dominant, they accounted for 50% or more of the total catch biomass during nearly every sampling season (Figure 3; numerical versus biomass summaries can be explored here: https://lebs.shinyapps.io/western-basin/).

Freshwater Drum dominated the biomass proportion with percentages as high as $\sim 70 \%$ in spring 2015 (Figure 3). Although it has remained the dominant single species by biomass (except in autumn 2016), Freshwater Drum biomass fluctuated from 25% to 53% since autumn 2016 (Figure 3). By comparison, the proportions of other large benthic species, such as Channel Catfish, Common Carp and Quillback, have remained relatively constant across the series (Figure 3). Other non-forage species that dominated the biomass composition of the catch were percids (Walleye and Yellow Perch) and moronids (White Perch and White Bass). Both moronid species and Yellow Perch biomass proportions were relatively constant across the series, but Walleye (adults and juveniles) increased from an average of 5.08% (s.d. $=1.16$) prior to 2015 to 14.22% (s.d. $=6.4$) of the catch biomass in recent years (Figure 3). The proportion of Gizzard Shad to the overall catch has remained stable over the 6-year survey ($\sim 5-10 \%$), while contributions from other forage species (Emerald Shiner and Rainbow Smelt) declined across the series to below 5\%.

Trends in Percids

Age-0 Yellow Perch catch rates in 2018 increased (229.44 fish/ha) compared with the previous 3 years (Figure 4). A larger peak in catch rates was observed for age-0 Yellow Perch in 2014, and although we expected a corresponding peak in age-1 catch rates one year later, the data did not exhibit such a pattern (Figure 4). By comparison for Walleye, a lagged year-class signal was evident in age- 0 and age- 1 catch rate peaks corresponding to the 2015 year-class (age- $0=69.67$ fish/ha; Figure 4). Further an increase in Walleye age-0 catch rates from 2013 to 2014 was also reflected by an increase in age- 1 catch rates from 2014 to 2015 (not shown). Increased catches of age-0 Walleye in 2018 may be a precursor to increased catches of age-1 Walleye in 2019; however, cross-validations of Walleye yearclass variability from this survey will depend upon additional years of data.

Figure 4. Mean number per hectare of age-0 and age-1 Walleye (upper panel) and Yellow Perch (lower panel) in bottom trawls from western Lake Erie during autumn.

Summary

Although biomass of bottom trawl catches from western Lake Erie has declined dramatically over the past six years, cycles of fish population abundance are often longer than six years in the Laurentian Great Lakes (GLSC 2014). Thus, trends from a six-year data series should be interpreted cautiously. This survey provided new perspectives not
immediately available from existing monitoring efforts to support goals of natural resource management efforts to establish a mesotrophic ecosystem with a harmonic cool-water species assemblage of forage fish and percids (Ryan et al. 2003). Notably, other Lake Erie surveys (e.g. Forage Task Group 2018) have underemphasized the importance of Freshwater Drum because they tend to report numerical instead of biomass-based measures of relative abundance. The potential for Freshwater Drum to impact invasive dreissenid mussels has only been evaluated superficially (French \& Bur 1996), but due to its dominance in the fish community, this species has potential to contribute substantially to the remineralization of phosphorous in Lake Erie through the consumption of mussels (e.g., Johnson et al. 2005). Data preseneted herein, along with other surveys, highlight the need to better understand mechanisms driving forage fish abundance. Adult Walleye and Yellow Perch have historically relied on Gizzard Shad and Emerald Shiner as primary forage (Knight et al. 1984). Particularly for Walleye, which have experienced strong yearclasses in 2015 and 2018, the low abundance of forage in western Lake Erie may result in reduced growth and early emigration (Madenjian et al. 1996; Wang et al. 2007). Diet investigations that incorporate ontogenetic changes in spatial distribution may be needed to better inform potential management actions that would ensure sustainable fisheries in Lake Erie. Such efforts will require surveys like the one presented in this report.

Acknowledgments

We thank H. Bontrager, D. Hall, J. Ludwig, J. McKenna, D. Panos, and G. Rutz for assistance in the field. Constructive reviews were provided by B. O'Malley and J. Deller. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Johnson, T. B., D. B. Bunnell, and C. T. Knight. 2005. A Potential New Energy Pathway in Central Lake Erie: the Round Goby Connection. Journal of Great Lakes Research 31, Supplement 2(0):238-251.

French, J. R. P., and M. T. Bur. 1996. The Effect of Zebra Mussel Consumption on Growth of Freshwater Drum in Lake Erie. Journal of Freshwater Ecology 11(3):283-289.

Forage Task Group. 2018. Report of the Lake Erie Forage Task Group, March 2018. Presented to the Standing Technical Committee, Lake Erie Committee of the Great Lakes Fishery Commission, Ann Arbor, Michigan, USA.

GLSC. 2014. Compiled Reports to the Great Lakes Fishery Commission of the Annual Bottom Trawl and Acoustics surveys, 2014. Prepared by the U.S. Geological Survey, Great Lakes Science Center.
http://www.glfc.org/pubs/lake_committees/common_docs/CompiledReportsfromUSGS20 15.pdf, Accessed March 2019.

Hartman W.L. 1973. Lake Erie: effects of exploitation, environmental changes, and new species on the fishery resources. J. Fish. Res. Bd. Can. 29: 899-912.

Keretz, K.R., 2019, Lake Erie Fish Community Data, 2013-2018: U.S. Geological Survey data release, https://doi.org/10.5066/P9Z0SBKZ.

Knight, R.L., Margraf, F.J. \& Carline, R.F. 1984. Piscivory by walleyes and yellow perch in western Lake Erie. Transactions of the American Fisheries Society. 113: 677-693.

Leach J.H. \& S.J. Nepszy. 1976. The fish community in Lake Erie. J. Fish. Res. Bd. Can. 33: 622-638.

Ludsin S.A., M.W. Kershner, K.A. Blocksom, R.A. Stein, \& R.L. Knight. 2001. Life after death in Lake Erie: nutrient controls drive fish species richness, rehabilitation. Ecol. Appl. 11: 731746.

Madenjian C.P., J.T. Tyson, R.L. Knight, M.W. Kershner, \& M.J. Hansen. 1996. First-Year Growth, Recruitment, and Maturity of Walleyes in Western Lake Erie. Transactions of the American Fisheries Society. 125(6).

Morris E.K., T. Caruso, F. Buscot, M. Fischer, C. Hancock, T.S. Maier, M.C. Rillig. 2014. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecology and Evolution 4(18):3514-3524

Ryan P.A., R. Knight, R. MacGregor, G. Towns, R. Hoopes, \& W. Culligan. 2003. Fishcommunity goals and objectives for Lake Erie. Great Lakes Fish. Comm. Spec. Publ. 03-02. 56 p.

Wang, H., E. S. Rutherford, H. A. Cook, D. W. Einhouse, R. C. Haas, T. B. Johnson, R. Kenyon, B. Locke, and M. W. Turner. 2007. Movement of Walleyes in Lakes Erie and St. Clair inferred from tag return and fisheries data. Transactions of the American Fisheries Society 136:539551.

[^0]: ${ }^{1}$ LEBS 2019. Fisheries Research and Monitoring Activities of the Lake Erie Biological Station, 2018. Prepared by Kevin R. Keretz, P.M. Kočovský, R.T. Kraus, J.D. Schmitt, and C.S. Vandergoot. Report of the Lake Erie Biological Station (LEBS) to the Great Lakes Fishery Commission at the Annual Meeting of Lake Committees, Ypsilanti, MI. 11 pp.

[^1]: that were not plotted due to very low abundances in trawls. conventions. Also, note that Round Goby, Sea Lamprey, and Goldfish are non-native species categories but are only plotted in the upper panel to conform with Lake Erie task group

